
1 INTRODUCTION 

The GlobalSoilMap project aims to create a global 
grid of a variety of soil functional properties at a fine 
resolution (3 arc-second by 3 arc-second). These dig-
ital products are designed to provide estimates for a 
minimum data set of 12 soil properties including 
depth to rock, plant exploitable (effective) depth, or-
ganic carbon, pH, clay, silt, sand, coarse fragments, 
effective cation exchange capacity (ECEC), bulk 
density (whole soil), bulk density (fine earth), and 
available water capacity (GlobalSoilMap Science 
Committee 2013). In addition to point estimates for 
these values, uncertainty of these estimates are to be 
presented as 95% prediction intervals (PIs) about the 
point estimate (GlobalSoilMap Science Committee 

2013). Estimates for all properties except depth to 
rock and effective depth are made for six standard 
depth increments (0-5, 5-15, 15-30, 30-60, 60-100, 
and 100-200 cm). 

For the initial version of the map being produced 
of the conterminous United States, property values 
were estimated from the US General Soil Map 
(STATSGO2) database (USDA-NRCS 2011), which 
is a broad-based inventory of soil data recorded 
across the United States. The STATSGO2 database 
aggregates soil information into polygons that are at-
tributed with multiple components. Components 
may be soil (series or higher-level taxa) or non-soil 
(water, rock outcrop, urban areas, etc.). Tables with-
in the relational database include: (i) the map unit 
table, which lists the spatial map units; (ii) the com-
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ABSTRACT: The GlobalSoilMap project aims to create a global grid of a variety of soil functional properties 
at a fine resolution. Uncertainty surrounding these property estimates is of utmost importance when utilizing 
soil maps for predictive purposes. For the initial version of the map being produced of the United States, 
property values were estimated from the U.S. General Soil Map (STATSGO2) database, which is a broad-
based inventory of soil data recorded across the United States. Multiple soil and non-soil (water, rock outcrop, 
urban areas, etc.) components are aggregated in STATSGO2 into groups of similar polygons, called map 
units. Each soil component includes various estimated property values for each horizon associated with that 
specific soil (if applicable), including an estimated upper, lower, and representative value. Hierarchically, 
STATSGO2 includes multiple horizon values for each component, which make up the map units. Previous 
work has used area-weighted means of the representative values for each component to develop a representa-
tive value for the map unit. For this study, prediction intervals were developed from the low and high estimat-
ed property values provided in the database. Instead of calculating a weighted mean of the low and high esti-
mated property values, the lower prediction limit was determined as the lowest of the low values associated 
with any of the components in the map unit. The upper prediction limit was determined as the highest of the 
high values in the same manner. For each map unit, this method provided a unique prediction interval which 
was likely to encompass property values of soil typically found in that map unit. We empirically evaluated the 
soil property prediction intervals derived from STATSGO2 for three soil properties: organic carbon content, 
pH, and clay content. Using measured property data from up to 722 pedons from the National Cooperative 
Soil Survey database, prediction intervals were assessed by modeling their coverage accuracy over a set of ex-
ternal validation data. The effects of soil depth, soil order, temperature regime, and moisture regime on pre-
diction interval coverage were analyzed, and coverage was found to be 87.6% for organic carbon, 90.6% for 
pH, and 86.4% for clay. It is shown that legacy data from the United States that includes low and high proper-
ty methods can be used to represent uncertainty in the form of prediction intervals. Coverage based on these 
methods is only slightly below the nominal level of 95%. Consistency of these intervals was demonstrated 
across a variety of soil orders, temperature regimes, and moisture regimes. 



ponent table, which includes the proportion of up to 
21 components in each map unit; and (iii) the hori-
zon table, which lists the number and type of hori-
zons associated with each component as well as their 
properties. STATSGO2 reports an estimated upper, 
lower, and representative value for a suite of soil 
properties. For each component, an equal-area spline 
function was applied to the horizon data to calculate 
soil property values for each of six standard soil 
depth increments prescribed by GlobalSoilMap. The 
component percentages were then used to calculate 
an area-weighted mean of the representative values 
for each component to develop a representative val-
ue for the map unit. The procedures for developing 
these initial GlobalSoilMap products for the conter-
minous US are described in greater detail by Odgers 
et al. (2012). 

Uncertainty in soil property estimates is of great 
interest to the GlobalSoilMap project and the broad-
er digital soil mapping community. Here we describe 
an approach for obtaining reasonable PIs that are 
likely to contain the true property values of soils of 
the conterminous US, and which are necessary for 
interpretation and use of digital soil maps. Whether 
used for modeling purposes or by scientists in the 
field, maps should accurately portray the uncertainty 
in soil property estimates. 

2 METHODS 

Component-level low and high estimates found in 
STATSGO2 were aggregated to make low and high 
estimates at the map unit level. Low estimates for an 
entire map unit were derived by taking the minimum 
of all the components’ low estimates within that map 
unit. Similarly, high estimates for a map unit were 
taken to be the maximum of all the components’ 
high estimates within that map unit. The primary in-
terest of this paper is to empirically evaluate the 
coverage of these PIs using external validation 
points from across the US. 

Soil measurements from an external dataset were 
used to validate the PI coverage. These validation 
data were obtained from a 2007 snapshot of the Na-
tional Soil Characterization Database (National Co-
operative Soil Survey 2007) and will be referred to 
as validation pedons or validation points. The loca-
tion of all the validation pedons available for the sur-
face horizon (0 to 5 cm) are shown for organic car-
bon (Fig. 1) and clay content (Fig. 2). The number of 
validation pedons with attributed measurements var-
ies by soil property. Of the three soil properties con-
sidered, organic carbon was generally the least at-
tributed and percent clay was the most attributed. 

Because the validation pedon data provide meas-
urements for each horizon at the depths that they ac-
tually occupy in the field, these depths had to be 
converted to the six standard depths used by     

GlobalSoilMap. We opted for a depth-weighted av-
erage approach (instead of the equal area spline 
function) in order to keep the validation measure-
ments as representative as possible when they were 
translated into their corresponding standard depths. 
After the standard depth property values were calcu-
lated for each validation pedon, these values were 
used to assess the validity of our PI estimates that 
were obtained using STATSGO2. 

One of our primary interests was to empirically 
evaluate the dependency of PI coverage on other soil 
characteristics. Specifically, we selected soil order, 
temperature regime, and moisture regime, which we 
collectively label as soil classifications throughout 
this paper. Spatial correlation of the PI coverage was 
also investigated. 

PI coverage was analyzed separately for each 
combination of depth (six standard depths), soil 
property (organic carbon, pH, and clay content), and 
soil classification (soil order, moisture regime, and 
temperature regime). Pearson’s chi-squared tests for 
independence (Cochran 1952) were used to test if 
the coverage probability was independent of soil 
classification. 

Moran’s I statistic was used to test for spatial pat-
terns of coverage of the validation points. Each point 
was labeled as falling below, above, or within the 
associated PI. Moran’s I statistic is a global statisti-
cal test used to determine if the pattern of coverage 
exhibits dispersion, complete spatial randomness, or 
clustering (Bivand et al. 2008). 

3 RESULTS 

The characteristics of the PIs for organic carbon, pH, 
and clay are summarized in Table 1. These summary 
statistics reflect the natural variability of soil proper-
ties across the US. The sample medians of the PI 
widths calculated over the entire US were 1.77% for 
organic carbon, 2.86 units of pH, and 31.3% for clay 
content (Table 1). 

Across all depth intervals, the proportion of all 
the validation points that were covered by the corre-
sponding PI was 87.6% for organic carbon, 90.6% 
for pH, and 86.4% for clay. When summarized by 
standard depth and by soil classifications, the cover-
age of the PIs varies from 50% to 100% (Tables 2-
10). 

 
Table 1. Five-number summary for PI width. 

 Carbon pH Clay 

Minimum 0.0% 0.36 0.0% 
Lower quartile 0.83% 2.21 21.6% 
Median 1.77% 2.86 31.3% 
Upper quartile 3.20% 3.46 45.3% 
Maximum 75.60% 7.16 100.0% 

 



 
Figure 1: Location of 0 to 5 cm validation points for organic carbon across the conterminous US. Validation pedons with property 
values that are below the lower prediction limit are highlighted with triangles. Those exceeding the upper prediction limit are high-
lighted with circles.  

 
Figure 2: Location of 0 to 5 cm validation points for clay content across the conterminous US. Validation pedons with property val-
ues that are below the lower prediction limit are highlighted with triangles. Those exceeding the upper prediction limit are highlight-
ed with circles.  
Table 2: Organic carbon coverage chi-squared test for independence: Soil order. 

 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

Order* p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Alfisols 0.925 67 0.938 64 0.930 57 0.912 57 0.887 53 0.907 54 
Aridisols 0.870 23 0.950 20 0.955 22 0.850 20 0.923 13 0.889 18 
Entisols 0.857 21 0.778 18 0.636 11 0.529 17 0.688 16 0.923 13 
Inceptisols 0.571 21 0.550 20 0.500 14 0.750 16 0.909 11 0.778 9 
Mollisols 0.906 64 0.910 67 0.933 60 0.932 59 0.893 56 0.863 51 
Ultisols 0.963 27 1.000 26 0.956 23 1.000 18 0.895 19 1.000 17 
Vertisols 0.833 6 1.000 6 1.000 3 1.000 5 1.000 7 0.857 7 

p-value .0011 .0000 .0000 .0002 .3176 .6591 

* Andisols and Spodosols were removed because of small sample sizes.  
Table 3: Organic carbon coverage chi-squared test for independence: Temperature regime. 

Temperature 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

regime* p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Cryic 0.545 11 0.545 11 0.500 8 0.750 8 0.600 5 0.600 5 
Frigid 0.956 45 0.936 47 0.977 43 0.955 44 0.974 39 0.838 37 
Mesic 0.882 110 0.905 105 0.944 90 0.924 92 0.900 90 0.943 88 
p-value .0007 .0002 .0001 .0709 .0398 .0419 

* Hyperthermic, isomesic, and isothermic were removed because of small sample sizes. 



Table 4: Organic carbon coverage chi-squared test for independence: Moisture regime. 

Moisture 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

regime p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Aquic 0.870 23 0.909 22 0.944 18 0.947 19 0.882 17 0.889 18 
Aridic 0.880 25 0.957 23 0.958 24 0.833 24 0.889 18 0.952 21 
Udic 0.888 98 0.884 95 0.909 77 0.909 77 0.867 75 0.924 66 
Ustic 0.889 54 0.963 54 0.940 50 0.922 51 0.959 49 0.846 52 
Xeric 1.000 14 1.000 14 1.000 10 1.000 9 1.000 7 0.833 6 

p-value .7571 .3062 .7826 .5492 .4348 .5708  
Table 5: pH coverage chi-squared test for independence: Soil order. 

 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

Order* p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Alfisols 0.880 50 0.889 81 0.957 94 0.967 91 0.904 73 0.857 49 
Andisols 0.500 4 0.900 10 1.000 9 1.000 16 1.000 12 1.000 11 
Aridisols 1.000 60 0.945 55 0.839 56 0.923 39 0.829 35 0.850 20 
Entisols 0.750 44 0.829 47 0.778 36 0.822 45 0.862 29 0.938 16 
Inceptisols 0.892 111 0.907 140 0.926 135 0.945 128 0.946 74 0.891 46 
Mollisols 0.912 148 0.922 153 0.953 148 0.917 121 0.903 72 0.778 45 
Spodosols 1.000 5 1.000 6 1.000 4 1.000 7 1.000 5 1.000 3 
Ultisols 0.850 40 0.897 78 0.919 74 0.890 73 0.872 47 0.891 46 
Vertisols 1.000 14 0.929 14 1.000 9 1.000 9 1.000 8 1.000 10 
p-value .0006 .6814 .0065 .0793 .4738 .4038 

* Histosols were removed because of small sample size.  
Table 6: pH coverage chi-squared test for independence: Temperature regime. 

Temperature 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

regime* p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Cryic 0.793 29 0.818 33 0.818 22 0.941 17 0.933 15 0.875 8 
Frigid 0.903 124 0.936 140 0.958 118 0.964 111 0.933 60 0.941 34 
Mesic 0.912 216 0.916 297 0.933 315 0.934 303 0.894 207 0.857 147 
Thermic 0.951 82 0.956 90 0.899 89 0.875 80 0.919 62 0.854 48 
p-value .0875 .0775 .0782 .1170 .7623 .6073 

* Hyperthermic, isomesic, and isothermic soils were removed because of small sample sizes.  
Table 7: pH coverage chi-squared test for independence: Moisture regime. 

Moisture 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

regime* p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Aquic 0.972 36 0.925 40 0.953 43 0.907 43 0.939 33 0.933 15 
Aridic 0.959 73 0.913 69 0.838 68 0.920 50 0.872 47 0.846 26 
Udic 0.891 138 0.934 226 0.939 247 0.951 245 0.919 149 0.897 107 
Ustic 0.901 101 0.940 100 0.929 85 0.917 72 0.898 49 0.795 44 
Xeric 0.924 79 0.902 92 0.962 78 0.926 81 0.915 47 0.833 36 
p-value .3124 .8425 .0324 .6849 .8382 .4429  
Table 8: Percent clay coverage chi-squared test for independence: Soil order. 

 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

Order* p̂ n p̂ n p̂ p̂  n p̂ n p̂ n 

Alfisols 0.852 122 0.844 122 0.893 112 0.923 117 0.881 109 0.854 103 
Andisols 0.800 10 0.882 17 0.867 15 0.812 16 0.857 14 0.917 12 
Aridisols 0.915 59 0.889 54 0.915 59 0.912 57 0.857 42 0.932 44 
Entisols 0.830 53 0.810 58 0.761 46 0.904 52 0.955 44 0.971 35 
Inceptisols 0.712 146 0.767 176 0.834 169 0.902 164 0.942 139 0.936 110 
Mollisols 0.961 181 0.941 187 0.947 169 0.912 171 0.878 147 0.877 138 
Spodosols 1.000 6 1.000 6 0.800 5 1.000 8 1.000 7 1.000 6 
Ultisols 0.785 79 0.773 88 0.835 79 0.904 83 0.872 78 0.847 59 
Vertisols 0.786 14 0.714 14 0.778 9 0.818 11 0.939 14 0.786 14 
p-value .0000 .0003 .0131 .8532 .4173 .2126  
Table 9: Percent clay coverage chi-squared test for independence: Temperature regime. 

Temperature 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

regime* p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Cryic 0.789 33 0.824 34 0.857 28 0.900 30 0.864 22 0.941 17 
Frigid 0.889 144 0.883 163 0.907 151 0.874 159 0.860 129 0.954 110 
Hyperthermic 0.714 7 0.600 5 1.000 5 1.000 6 1.000 5 1.000 5 
Mesic 0.876 362 0.858 394 0.880 367 0.914 374 0.890 336 0.850 286 
Thermic 0.740 104 0.752 105 0.830 94 0.925 93 0.977 88 0.936 94 

p-value .0038 .0206 .3931 .5206 .0614 .0124 

* Isomesic and isothermic soils were removed because of small sample sizes. 
 



Table 10: Percent clay coverage chi-squared test for independence: Moisture regime. 

Moisture 0-5 cm 5-15 cm 15-30 cm 30-60 cm 60-100 cm 100-200 cm 

regime* p̂ n p̂ n p̂ n p̂ n p̂ n p̂ n 

Aquic 0.767 60 0.797 59 0.849 53 0.891 55 0.922 51 0.945 55 
Aridic 0.875 72 0.853 68 0.859 71 0.884 69 0.852 54 0.926 54 
Udic 0.822 276 0.826 322 0.869 297 0.934 302 0.929 269 0.908 217 
Ustic 0.930 115 0.915 117 0.935 108 0.883 111 0.906 106 0.922 102 
Xeric 0.903 93 0.878 98 0.906 85 0.871 93 0.781 73 0.710 62 
p-value .0090 .1283 .3043 .2554 .0041 .0000 

 

Results of the chi-squared test for independence 
can also be found in Tables 2 through 10. Columns 
represent different standard depths and give both the 
number of pedons belonging to that specific group 
(n) and the proportion of these validation points that 
were covered by the corresponding PI (p̂). At the 
bottom of each depth column, a p-value for the chi-
squared test for independence is presented. Because 
multiple statistical hypothesis tests are being per-
formed, a Bonferroni corrected significance level 
was used to control the familywise error rate. A fam-
ily was taken to be the six tests on each of the stand-
ard depth intervals that belong the same soil property 
and soil classification, so a corrected significance 
level of αc = (0.05/6) = 0.008 was set a priori. The 
individual p-values in Tables 2 through 10 should be 
compared to αc. 

To illustrate how to read the table, the organic 
carbon 0 to 5 cm standard depth was tested for inde-
pendence between coverage probability and soil or-
der (Table 2). Seven different soil orders (Alfisols, 
Aridisols, Entisols, Inceptisols, Mollisols, Ultisols, 
and Vertisols) were well represented in the valida-
tion data giving a total sample size of 229 for this 
property at this depth. Andisols and Spodosols were 
removed from this analysis because of low sample 
sizes (n < 5). The chi-squared test has a p-value of 
0.0011, which indicates that the coverage level de-
pends on soil order. Looking closer, it appears that 
Inceptisols exhibit lower PI coverage (57.1%) in the 
validation sample, while Ultisols show a higher cov-
erage (96.3%). Looking at the deeper standard 
depths, we see this trend continues down through the 
30 to 60 cm depth range. However, at the deepest 
depths, 60 to 100 cm and 100 to 200 cm, this trend 
dissipates and the corresponding p-values (0.3176 
and 0.6591, respectively) indicate that the coverage 
probability does not depend on the soil order at these 
lower depths. Examining the organic carbon data by 
temperature regime (Table 3), we see that a depend-
ence exists between temperature regime and cover-
age probability at the shallowest three depth ranges 
down to 30 cm; however, at the deeper three depth 
ranges, this dependence disappears. Similar results 
for all depths, soil properties, and soil classifications 
can be found in the remaining tables. Coverage 
probability is typically between 80% and 95%. In 
nearly all cases, the coverage probability was inde-
pendent of the moisture regime, which is important 
in determining the nationwide consistency of PIs. 

Soil pH (Tables 5 through 7) had more validation 
points than organic carbon. Concerning pH, soil or-
der and coverage probability were dependent at the 
shallowest depths, but were independent at the deep-
er depths. For pH, temperature regime and PI cover-
age were independent at all depths. 

For percent clay (Tables 8 through 10), it can be 
seen that the number of validation points is similar 
to that of pH. Clay content analysis shows similar 
results to pH when looking at soil order. The shal-
lower depths, 0 to 5 cm and 5 to 15 cm, show a de-
pendence between soil order and coverage probabil-
ity, but this dependence disappears as depth 
increases. A dependence between coverage probabil-
ity and the five examined temperature regimes was 
found at the shallowest depth, but not at any of the 
deeper depths. 

Spatial autocorrelation tests using Moran’s I sta-
tistic reveal the coverage pattern is clustered at near-
ly all depths for organic carbon, pH, and percent clay 
(data not shown). The only exceptions, in which no 
significant spatial autocorrelation was observed, are 
the organic carbon data for the 0 to 5 cm and 60 to 
100 cm depth ranges. 

4 DISCUSSION 

Developing uncertainty estimates for regional to 
continental scale maps of soil properties derived 
from legacy databases can be challenging because of 
sparse data on soil properties and insufficient infor-
mation on soil property variability associated with 
traditional soil surveys (Lilburne et al. 2006). Our 
approach to developing PIs utilized the estimated da-
ta available in the STATSGO2 database to construct 
map unit level PIs. Given the relatively limited 
number of sample points with measured soil proper-
ty data, this approach provides estimates of the lower 
and upper limits for selected soil properties at any 
depth and any location with reasonable confidence. 
While the derived PIs seem to encompass a reasona-
ble proportion of the validation pedon data, the actu-
al widths of these intervals might be larger than is 
practically useful. Further analysis of the actual PI 
widths is needed to better assess this. 

In general the PIs exhibit more dependence on 
soil order and temperature regime at shallower 
depths (0 to 30 cm). This dependence tends to dis-
appear below 30 cm. We posit that this trend may be 



the result of the spline algorithm causing systematic 
shifts of the PIs at shallower depths of soil profiles 
for certain soil orders and temperature regimes. Oth-
er possible explanations could include the greater 
variability within the surface horizons or an unrepre-
sentative (non-random) selection of validation pe-
dons. All of these possible explanations should be 
investigated further. 

PI coverage almost exclusively appears independ-
ent of moisture regime at all depths, which bodes 
well for stating the consistency of the prediction in-
tervals across the generally gradient of soil moisture 
regimes in the US. However, the temperature regime 
and soil order dependencies might suggest latitudinal 
or elevation difference in data collection methods or 
overall success of the original mappers in fully char-
acterizing soil property variability. 

Spatial autocorrelation tests show clustering at 
nearly all depth ranges for all soil properties. This is 
not surprising given the closeness of some of the 
validation pedons. Intuitively, pedons that are spa-
tially close to one another are likely to share cover-
age status (i.e. underestimated, covered, or overesti-
mated). The observed spatial dependence between 
validation points threatens assumptions made by the 
chi-square tests for independence, but we believe 
lack of spatial dependence would not change the 
main findings of this study. To eliminate spatial au-
tocorrelation among our validation points, a more 
spatially diverse set of sample points selected across 
the entire United States would likely be beneficial. 
Although the validation pedons used in this evalua-
tion represent a variety of soil orders, temperature 
regimes, and moisture regimes from across the con-
terminous US, they represent points available in a 
public database and were not the consequence of 
random selection. However, the aforementioned va-
riety of soil used for validation leads us to believe 
that the data are adequate to assess the coverage of 
the PIs and that the results are not heavily influenced 
by sample selection bias. 

The method proposed in this paper for PI creation 
when legacy data is available has several advantages. 
First, representative property estimates are not re-
quired. Second, the method is simple, which allows 
it to be easily understood and implemented. Third, 
for the three soil properties discussed, the observed 
PI coverage closely approximates the 95% PI cover-
age targeted by the GlobalSoilMap specifications. 

As with any method, limitations exist for our pro-
posed method as well. First, PI development requires 
low and high estimates to be provided at the compo-
nent level. Second, our method cannot be used to ob-
tain a PI with an adjustable coverage probability 
(75% for instance). 

An important issue that arises is whether the PIs 
created from this method are too wide for practical 
use. The reported PI width medians (carbon = 
1.77%, pH = 2.86, clay = 31.3%) could be crafted to 

encompass a large portion of soils worldwide (e.g. 
soils with organic carbon between 0.1-1.9, pH 4.0-
7.0, and clay 5% to 35%). This highlights the need 
for more narrow prediction limits. To get narrower 
PIs, it is likely necessary to begin with a map that 
does not aggregate up to 21 components per map 
unit. Applying these same methods to more detailed 
soil maps, such as the USDA-NRCS Soil Survey 
Geographic (SSURGO) database, or modifying these 
methods for use with disaggregated soil survey 
products (Häring et al. 2012, Nauman & Thompson, 
accepted) could alleviate this issue. 

Even though the collection methods of the legacy 
data used to derive our PIs is primarily based on ex-
pert knowledge rather than objective measurement, 
we have demonstrated that these data can be used to 
create PIs that are remarkably consistent across near-
ly all standard depths, soil orders, moisture regimes, 
and temperature regimes. In almost all cases, the ob-
served PI coverage is only slightly below the nomi-
nal level of 95% and is similar to the empirically de-
rived PI coverage of 91% and 93% reported by 
Malone et al. (2011). We believe that these PIs de-
rived from the STATSGO2 database represent a rea-
sonable initial product that can serve as a starting 
point for creating subsequent versions of PIs for 
GlobalSoilMap products for the US. 
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